Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc1 complex.
نویسندگان
چکیده
Following addition of myxothiazol to antimycin-treated chromatophores from Rhodobacter sphaeroides poised at an ambient redox potential (E(h)) of approximately 300 mV, the amplitude of the flash-induced cytochrome c(1) oxidation in the ms range increased, indicating a decrease in the availability of electrons from the immediate donor to c(1), the Rieske iron-sulfur protein (ISP). Because the effect was seen only over the limited E(h) range, we conclude that it is due to a decrease in the apparent midpoint redox potential (E(m)) of the ISP by about 40 mV on addition of myxothiazol. This is in line with the change in E(m) previously seen in direct redox titrations. Our results show that the reduced ISP binds with quinone at the Q(o) site with a higher affinity than does the oxidized ISP. The displacement of ubiquinone by myxothiazol leads to elimination of this preferential binding of the ISP reduced form and results in a shift in the midpoint potential of ISP to a more negative value. A simple hypothesis to explain this effect is that myxothiazol prevents formation of hydrogen bond of ubiquinone with the reduced ISP. We conclude that all Q(o) site occupants (ubiquinone, UHDBT, stigmatellin) that form hydrogen bonds with the reduced ISP shift the apparent E(m) of the ISP in the same direction to more positive values. Inhibitors that bind in the domain of the Q(o) site proximal to heme b(L) (myxothiazol, MOA-stilbene) and displace ubiquinone from the site cause a decrease in E(m) of ISP. We present a new formalism for treatment of the relation between E(m) change and the binding constants involved, which simplifies analysis. Using this formalism, we estimated that binding free energies for hydrogen bond formation with the Q(o) site occupant, range from the largest value of approximately 23 kJ mol(-1) in the presence of stigmatellin (appropriate for the buried hydrogen bond shown by structures), to a value of approximately 3.5 kJ mol(-1) in the native complex. We discuss this range of values in the context of a model in which the native structure constrains the interaction of ISP with the Q(o) site occupant so as to favor dissociation and the faster kinetics of unbinding necessary for rapid turnover.
منابع مشابه
Role of the Rieske iron-sulfur protein midpoint potential in the protonmotive Q-cycle mechanism of the cytochrome bc1 complex.
The midpoint potential of the [2Fe-2S] cluster of the Rieske iron-sulfur protein (Em7 = +280 mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochrome c catalyzed by the cytochrome bc1 complex. As the midpoint potential of the Rieske cluster is lowered by altering the electronic environment surrounding the cluster, the ubiquinol-cytochrome c reductase activity...
متن کاملElimination of the disulfide bridge in the Rieske iron-sulfur protein allows assembly of the [2Fe-2S] cluster into the Rieske protein but damages the ubiquinol oxidation site in the cytochrome bc1 complex.
The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic p...
متن کاملComplete thermodynamic characterization of reduction and protonation of the bc(1)-type Rieske [2Fe-2S] center of Thermus thermophilus.
Rieske iron-sulfur (2Fe-2S) clusters play a central role in energy transduction by the quinone:cytochrome c oxidoreductases of the respiratory and photosynthetic chains (the bc1 and b6f complexes) and in the bacterial degradation of aromatic compounds.1 Distinguished from “ferredoxin-type” 2Fe-2S clusters by reduction potentials up to 700 mV higher, Rieske centers have one iron atom coordinated...
متن کاملStructure of a water soluble fragment of the 'Rieske' iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 A resolution.
BACKGROUND The 'Rieske' iron-sulfur protein is the primary electron acceptor during hydroquinone oxidation in cytochrome bc complexes. The spectroscopic and electrochemical properties of the 'Rieske' [2Fe-2S] cluster differ significantly from those of other iron-sulfur clusters. A 129-residue water soluble fragment containing the intact [2Fe-2S] cluster was isolated following proteolytic digest...
متن کاملA comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins.
The Rieske iron-sulfur center consists of a [2Fe-2S] cluster liganded to a protein via two histidine and two cysteine residues present in conserved sequences called Rieske motifs. Two protein families possessing Rieske centers have been defined. The Rieske proteins occur as subunits in the cytochrome bc1 and cytochrome b6f complexes of prokaryotes and eukaryotes or form components of archaeal e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 41 48 شماره
صفحات -
تاریخ انتشار 2002